|
|
From interpenetrating polymer networks to hierarchical porous carbons for advanced supercapacitor electrodes |
Ling Miaoa, Xiaoyu Qiana, Dazhang Zhua, Ting Chena, Guchuan Pinga, Yaokang Lvb, Wei Xiongc, Yafei Liua, Lihua Gana, Mingxian Liua |
a Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China;
b College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
c School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China |
|
|
Guide A novel and effective strategy to fabricate hierarchical porous carbons for supercapacitors is developed via in-situ activation of interpenetrating polymer networks obtained from simultaneous polymerization of the monomers for two polymeric networks. |
|
Abstract Hierarchical porous carbons (HPCs) are obtained via in-situ activation of interpenetrating polymer networks (IPNs) obtained from simultaneous polymerization of resorcinol/formaldehyde (R/F) and polyacrylamide (PAM). The hierarchically micro-, meso-and macroporous structure of as-prepared HPCs is attributed to the synergistic pore-forming effect of PAM and KOH, including PAM decomposition, KOH chemical activation, and a foaming process of potassium polyacrylate formed by partial hydrolysis of PAM in KOH aqueous solution. The typical HPC electrode with the highest surface area (2544 m2/g) shows a high specific capacitance of 261 F/g at 1.0 A/g and a superior rate capability of 216 F/g at 20 A/g in alkaline electrolyte. Moreover, the electrode maintains the capacitance retention of 90.8% after 10000 chargingdischarging cycles at 1.0 A/g, exhibiting long cycling life. This study highlights a new avenue towards IPNs-derived carbons with unique pore structure for promising electrochemical applications.
|
Received: 17 January 2019
|
Fund:This work was financially supported by the National Natural Science Foundation of China (Nos. 51772216, 21703161 and 21875165), the Science and Technology Commission of Shanghai Municipality, China (No. 14DZ2261100), and the Fundamental Research Funds for the Central Universities. |
Corresponding Authors:
Dazhang Zhu, Mingxian Liu
E-mail: zhudz@tongji.edu.cn;liumx@tongji.edu.cn
|
|
|
|
[1] |
D. Dubal, O. Ayyad, V. Ruiz, et al., Chem. Soc. Rev. 44(2015) 1777-1790.
|
[2] |
C. Han, Z. Tian, H. Dou, et al., Chin. Chem. Lett. 29(2018) 606-611.
|
[3] |
Q. Meng, W. Zhang, M. Hu, et al., Chem. Commun. 52(2016) 1957-1960.
|
[4] |
Y. Fu, Q. Wei, G. Zhang, et al., Adv. Energy Mater. 8(2018)1801445.
|
[5] |
R. Kötz, M. Carlen, Electrochim. Acta 45(2000) 2483-2498.
|
[6] |
J.R. Miller, P. Simon, Science 321(2008) 651-652.
|
[7] |
G. Gao, Dalton Trans. 44(2015) 18737-18742.
|
[8] |
H. Zhang, O. Noonan, X. Huang, et al., ACS Nano 10(2016) 4579-4586.
|
[9] |
Z. Song, D. Zhu, L. Li, et al., J. Mater. Chem. A 7(2019) 1177-1186.
|
[10] |
X. Lin, H. Lou, W. Lu, et al., Chin. Chem. Lett. 29(2018) 633-636.
|
[11] |
X. Wu, L. Jiang, C. Long, et al., Nano Energy 13(2015) 527-536.
|
[12] |
H. Shi, Electrochim. Acta 41(1996) 1633-1639.
|
[13] |
J. Zhou, Z. Li, W. Xing, et al., Adv. Funct. Mater. 26(2016) 7955-7964.
|
[14] |
Q. Long, W. Chen, H. Xu, et al., Energ. Environ. Sci. 6(2013) 2497-2504.
|
[15] |
D. Zhu, Y. Wang, W. Lu, et al., Carbon 111(2018) 667-674.
|
[16] |
J. Liu, N.P. Wickramaratne, S.Z. Qiao, et al., Nat. Mater. 14(2015) 763-774.
|
[17] |
C. Lian, C. Zhan, D. E. Jiang, et al., J. Phys. Chem. C 121(2017) 14010-14018.
|
[18] |
Z. Song, L. Li, D. Zhu, et al., J. Mater. Chem. A 7(2019) 816-826.
|
[19] |
W. Zhang, S. Bu, Q. Yuan, et al., J. Mater. Chem. A 7(2019) 647-656.
|
[20] |
J. Yan, Q. Wang, C. Lin, et al., Adv. Energy Mater. 4(2014) 1400500.
|
[21] |
P. Hao, Z. Zhao, Y. Leng, et al., Nano Energy 15(2015) 9-23.
|
[22] |
P. Strubel, S. Thieme, T. Biemelt, et al., Adv. Funct. Mater. 25(2015) 287-297.
|
[23] |
Z. Song, D. Zhu, D. Xue, et al., ACS Appl. Energy Mater. 1(2018) 4293-4303.
|
[24] |
Y. N. Sun, Z.Y. Sui, X. Li, et al., ACS Appl. Nano Mater. 1(2018) 609-616.
|
[25] |
Y. Zhang, L. Lu, Z. Zhang, et al., Chin. Chem. Lett. 29(2018) 641-644.
|
[26] |
J. G. Wang, D. Jin, R. Zhou, et al., ACS Nano 10(2016) 1936-0851.
|
[27] |
J. Ozaki, N. Endo, W. Ohizumi, et al., Carbon 35(1997) 1031-1033.
|
[28] |
J. Zhang, X. Zhong, H. Chen, et al., Electrochim. Acta 148(2014) 203-210.
|
[29] |
Z. Li, E. Liu, Y. Zhu, et al., Mater. Res. Bull. 64(2015) 6-11.
|
[30] |
S.S. Wong, T.T. Teng, A.L. Ahmad, et al., J. Hazard. Mater. 135(2006) 378-388.
|
[31] |
Y. Kitahara, K. Okuyama, K. Ozawa, et al., J. Therm. Anal. Calorim. 110(2012) 423-429.
|
[32] |
K.S.W.Sing,D.H.Everett,R.A.W.Haul,etal.,PureAppl.Chem.57(1985)603-619.
|
[33] |
L. Yu, C. Falco, J. Weber, et al., Langmuir 28(2012) 12373-12783.
|
[34] |
D. Zhu, J. Jiang, D. Sun, et al., J. Mater. Chem. A 6(2018) 12334-12343.
|
[35] |
T. Jawhari, A. Roid, J. Casado, Carbon 33(1995) 1561-1565.
|
[36] |
Z. Tan, G. Chen, Y. Zhu, Science 332(2011) 1537-1541.
|
[37] |
A. Jain, C. Xu, S. Jayaraman, et al., Microporous Mesoporous Mater. 218(2015) 55-61.
|
[38] |
C. Lei, N. Amini, F. Markoulidis, et al., J. Mater. Chem. A 1(2013) 6037-6042.
|
[39] |
J. Jiang, P. Nie, S. Fang, et al., Chin. Chem. Lett. 29(2018) 624-628.
|
[40] |
Y. Gogotsi, P. Simon, Science 334(2011) 917-918.
|
[41] |
Q. Wang, J. Yan, Z. Fan, Energ. Environ. Sci. 9(2016) 729-762.
|
[42] |
Z. Jing, Y. Li, F. Huang, et al., J. Electroanal. Chem. 823(2018) 474-481.
|
[43] |
J. Zhu, X. Dan, W. Qian, et al., Small 12(2016) 1935-1944.
|
[44] |
Jing Zhao, Gong, et al., Acta Chim. Sinica 76(2018) 107-112.
|
[45] |
C. Lian, D.-e. Jiang, H. Liu, et al., J. Phys. Chem. C 120(2016) 8704-8710.
|
[46] |
D. Xue, D. Zhu, M. Liu, et al., ACS Appl. Nano Mater. 1(2018) 4998-5007.
|
[47] |
X. Zheng, W. Lv, Y. Tao, et al., Chem. Mater. 26(2014) 6896-6903.
|
|
|
|