|
|
Ultrafine molybdenum carbide nanoparticles supported on nitrogen doped carbon nanosheets for hydrogen evolution reaction |
Kedong Xia, Junpo Guo, Cuijuan Xuan, Ting Huang, Zhiping Deng, Lingxuan Chen, Deli Wang |
Key laboratory of Material Chemistry for Energy Conversion and Storage(Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Guide Nitrogen doped carbon nanosheets supported molybdenum carbides nanoparticles (MoxC/NCS) have been synthesized by tuning the mass ratio of melamine and ammonia molybdate. The Mo2C/NCS-10 exhibits superior electrocatalytic performance and stability for HER, which was attributed to N-doped carbon nanosheets, small particle size, mesoporous structure, and large electrochemical active surface area. |
|
Abstract Molybdenum carbides (MoxC)/nitrogen doped carbon nanosheets (NCS) composites are synthesized via simple mixing melamine and ammonia molybdate, followed by a high-temperature treatment. Metal carbide nanoparticles with ultra-small size (13 nm) are uniformly supported on nitrogen doped carbon nanosheets. The hydrogen evolution reaction (HER) is investigated in both 0.5 mol/L H2SO4 and 1 mol/L KOH media. Mo2C/NCS-10 (melamine/ammonia molybdate weight ratio of 10:1) exhibits excellent performance with a low overpotential of 130 mV in 0.5 mol/L H2SO4 solution and 108 mV in 1 mol/L KOH solution at the current density of 10 mA/cm2. The better electrocatalytic activity could be ascribed to Ndoped carbon nanosheets, small particle size, mesoporous structure, and large specific surface area, which could provide the large electrochemical active surface area and facilitate mass transport.
|
Received: 30 March 2018
|
Fund:This work was supported by the National Natural Science Foundation (No. 21706086), 1000 Young Talent (to Deli Wang). |
Corresponding Authors:
Deli Wang
E-mail: wangdl81125@hust.edu.cn
|
|
|
|
[1] |
J. Zhu, K. Sakaushi, G. Clavel, et al., J. Am. Chem. Soc. 137(2015) 5480-5485.
|
[2] |
S. Wang, J. Wang, M. Zhu, et al., J. Am. Chem. Soc. 137(2015) 15753-15759.
|
[3] |
P. Jena, J. Phys. Chem. Lett. 2(2011) 206-211.
|
[4] |
M.S. Faber, S. Jin, Energy Environ. Sci. 7(2014) 3519-3542.
|
[5] |
E.J. Popczun, J.R. McKone, C.G. Read, et al., J. Am. Chem. Soc. 135(2013) 9267-9270.
|
[6] |
J. Yin, Q. Fan, Y. Li, et al., J. Am. Chem. Soc. 138(2016) 14546-14549.
|
[7] |
X. Yan, L. Tian, X. Chen, J. Power Sources 300(2015) 336-343.
|
[8] |
C. Wan, B.M. Leonard, Chem. Mater. 27(2015) 4281-4288.
|
[9] |
Y.X. Wang, C.F. Liu, M.L. Yang, et al., Chin. Chem. Lett. 28(2017) 60-64.
|
[10] |
M. Tavakkoli, T. Kallio, O. Reynaud, et al., Angew. Chem. Int. Ed. 54(2015) 4535-4538.
|
[11] |
Z. Huang, Z. Chen, Z. Chen, et al., Nano Energy 9(2014) 373-382.
|
[12] |
X. Yan, L. Tian, M. He, X. Chen, Nano Lett. 15(2015) 6015-6021.
|
[13] |
B. Luo, T. Huang, Y. Zhu, D. Wang, J. Energy Chem. 26(2017) 1147-1152.
|
[14] |
X. Chen, G. Liu, W. Zheng, et al., Adv. Funct. Mater. 26(2016) 8537-8544.
|
[15] |
H. Yuan, L. Kong, T. Li, Q. Zhang, Chin. Chem. Lett. 28(2017) 2180-2194.
|
[16] |
J. Guo, J. Wang, Z. Wu, et al., J. Mater.Chem. A 5(2017) 4879-4885.
|
[17] |
W.F. Chen, C.H. Wang, K. Sasaki, et al., Energy Environ. Sci. 6(2013) 943-951.
|
[18] |
C. Wan, Y.N. Regmi, B.M. Leonard, Angew. Chem. Int. Ed. 53(2014) 6407-6410.
|
[19] |
H. Ang, H.T. Tan, Z.M. Luo, et al., Small 11(2015) 6278-6284.
|
[20] |
M. Fan, H. Chen, Y. Wu, et al., J. Mater. Chem. A 3(2015) 16320-16326.
|
[21] |
R. Ma, Y. Zhou, Y. Chen, et al., Angew. Chem. Int. Ed. 54(2015) 14723-14727.
|
[22] |
H. Vrubel, D. Merki, X. Hu, Energy Environ. Sci. 5(2012) 6136-6144.
|
[23] |
M.A. Lukowski, A.S. Daniel, F. Meng, et al., J. Am. Chem. Soc. 135(2013) 10274-10277.
|
[24] |
D. Voiry, M. Salehi, R. Silva, et al., Nano Lett. 13(2013) 6222-6227.
|
[25] |
T. Wang, K. Du, W. Liu, et al., J. Mater. Chem. A 3(2015) 4368-4373.
|
[26] |
Z. Wu, J. Wang, K. Xia, et al., J. Mater. Chem. A 6(2018) 616-622.
|
[27] |
H. Vrubel, X. Hu, Angew. Chem. Int. Ed. 51(2012) 12703-12706.
|
[28] |
Y. Liu, G. Yu, G.D. Li, et al., Angew. Chem. Int. Ed. 54(2015) 10752-10757.
|
[29] |
J. Gao, Z. Cheng, C. Shao, et al., J. Mater. Chem. A 5(2017) 12027-12033.
|
[30] |
D.R. Stellwagen, J.H. Bitter, Green Chem. 17(2015) 582-593.
|
[31] |
C. Wan, N.A. Knight, B.M. Leonard, Chem. Commun. 49(2013) 10409-10411.
|
[32] |
H.B. Wu, B.Y. Xia, L. Yu, X.Y. Yu, X.W. Lou, Nat. Commun. 6(2015) 6512.
|
[33] |
H. Ang, H. Wang, B. Li, et al., Small 12(2016) 2859-2865.
|
[34] |
T. Meng, L. Zheng, J. Qin, D. Zhao, M. Cao, J. Mater. Chem. A 5(2017) 20228-20238.
|
[35] |
L. Liao, S. Wang, J. Xiao, et al., Energy Environ. Sci. 7(2014) 387-392.
|
[36] |
D.H. Youn, S. Han, J.Y. Kim, et al., ACS Nano 8(2014) 5164-5173.
|
[37] |
K. Ojha, S. Saha, H. Kolev, B. Kumar, A.K. Ganguli, Electrochim. Acta 193(2016) 268-274.
|
[38] |
T. Asefa, X. Huang, Chem.-Eur. J. 23(2017) 10703-10713.
|
[39] |
S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25(2009) 10397-10401.
|
[40] |
R. Li, S. Wang, W. Wang, M. Cao, Phys. Chem. Chem. Phys. 17(2015) 24803-24809.
|
[41] |
X. Xu, F. Nosheen, X. Wang, Chem. Mater. 28(2016) 6313-6320.
|
[42] |
Y.Y. Chen, Y. Zhang, W.J. Jiang, et al., ACS Nano 10(2016) 8851-8860.
|
[43] |
H. Lin, Z. Shi, S. He, et al., Chem. Sci. 7(2016) 3399-3405.
|
[44] |
Y. Shi, Y. Yang, Y.W. Li, H. Jiao, Catal. Sci. Technol. 6(2016) 4923-4936.
|
[45] |
S.E. Jang, H. Kim, J. Am. Chem. Soc. 132(2010) 14700-14701.
|
[1] |
Xiaoxia Chen, Xiangjun Zhen, Hongyu Gong, Le Li, Jianwei Xiao, Zhi Xu, Deyue Yan, Guyu Xiao, Ruizhi Yang. Cobalt and nitrogen codoped porous carbon as superior bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reaction in alkaline medium[J]. Chinese Chemical Letters, 2019, 30(03): 681-685. |
|
|
|
|