|
|
Recent advances in the design of dopant-free hole transporting materials for highly efficient perovskite solar cells |
Xianglang Suna, Dongbing Zhaob, Zhong'an Lia |
a Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
b State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China |
|
|
Guide This review gives an overview of the latest advances in dopant-free hole transporting materials (HTMs) for perovskite solar cells and discusses the new molecular design strategies towards efficient and stable dopant-free HTMs. |
|
Abstract Continuous success has been achieved for solution-processed inorganic-organic hybrid perovskite solar cells (PVSCs) in the past several years, in which organic charge transporting materials play an important role. At present, most of the commonly used hole-transporting materials (HTMs) such as spiro-OMeTAD derivatives for PVSCs require additional chemical doping process to ensure sufficient conductivity and shift the Fermi level towards the HOMO level for efficient hole transport and collection. However, this doping process not only increases the complexity and cost of device fabrication, but also decreases the device stability. Thus development of efficient dopant-free HTMs for PVSCs is highly desirable and remains as a major challenge in this field. In this review, we will summarize the recent advances in the molecular design of dopant-free HTMs for PVSCs.
|
Received: 30 June 2017
|
Fund:This work was supported by grants from the National Natural Science Foundation of China (Nos. 21704030, 21602115). Z. Li and D. Zhao thank the financial support from the National 1000 Young Talents Program hosted by China. Z. Li also thanks the independent innovation research funding from HUST. |
Corresponding Authors:
Dongbing Zhao, Zhong'an Li
E-mail: dongbing.chem@nankai.edu.cn;lizha@hust.edu.cn
|
|
|
|
[1] |
L. Etgar, P. Gao, Z. Xue, et al., J. Am. Chem. Soc. 134(2012) 17396-17399.
|
[2] |
M. Liu, M.B. Johnston, H.J. Snaith, Nature 501(2013) 395-398.
|
[3] |
P. Gao, M. Gratzel, M.K. Nazeeruddin, Energy Environ. Sci. 7(2014) 2448-2463.
|
[4] |
M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photonics 8(2014) 506-514.
|
[5] |
https://www.nrel.gov/pv/assets/images/efficiency-chart.png.
|
[6] |
L. Calio;, S. Kazim, M. Gratzel, S. Ahmad, Angew. Chem. Int. Ed. 55(2016) 14522-14545.
|
[7] |
S. Kazim, M.K. Nazeeruddin, M. Gratzel, S. Ahmad, Angew. Chem. Int. Ed. 126(2014) 2854-2867.
|
[8] |
J. Burschka, N. Pellet, S.J. Moon, et al., Nature 499(2013) 316-319.
|
[9] |
W. Nie, H. Tsai, R. Asadpour, et al., Science 347(2015) 522-525.
|
[10] |
H. Zhou, Q. Chen, G. Li, et al., Science 345(2014) 542-546.
|
[11] |
T.J. Savenije, C.S. Ponseca, L. Kunneman, et al., J. Phys. Chem. Lett. 5(2014) 2189-2194.
|
[12] |
Q. Dong, Y. Fang, Y. Shao, et al., Science 347(2015) 967-970.
|
[13] |
P. Qin, S. Tanaka, S. Ito, et al., Nat. Commun. 5(2014) 3834.
|
[14] |
N. Pellet, P. Gao, G. Gregori, et al., Angew. Chem. Int. Ed. 126(2014) 3215-3221.
|
[15] |
H.S. Jung, N.G. Park, Small 11(2015) 10-25.
|
[16] |
A. Abate, S. Paek, F. Giordano, et al., Energy Environ. Sci. 8(2015) 2946-2953.
|
[17] |
S.F. Volker, S. Collavini, J.L. Delgado, ChemSusChem 8(2015) 3012-3028.
|
[18] |
P. Docampo, J.M. Ball, M. Darwich, G.E. Eperon, H.J. Snaith, Nat. Commun. 4(2013) 2761.
|
[19] |
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc.131(2009) 6050-6051.
|
[20] |
M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338(2012) 643-647.
|
[21] |
A. Sharenko, M.F. Toney, J. Am. Chem. Soc. 138(2016) 463-470.
|
[22] |
J. Seo, J.H. Noh, S.I. Seok, Acc. Chem. Res. 49(2016) 562-572.
|
[23] |
F. Ullah, H. Chen, C.Z. Li, Chin. Chem. Lett. 28(2017) 503-511.
|
[24] |
Y. Yu, P. Gao, Chin. Chem. Lett. 28(2017) 1144-1152.
|
[25] |
Z. Yu, L. Sun, Adv. Energy Mater. 5(2015) 1500213.
|
[26] |
Y. Li, Y. Zhao, Q. Chen, et al., J. Am. Chem. Soc. 137(2015) 15540-15547.
|
[27] |
Z.A. Li, Z. Zhu, C.C. Chueh, J. Luo, A.K.Y. Jen, Adv. Energy Mater. 6(2016) 1601165.
|
[28] |
Z. Hawash, L.K. Ono, S.R. Raga, M.V. Lee, Y. Qi, Chem. Mater. 27(2015) 562-569.
|
[29] |
X. Zhao, N.G. Park, Photonics 2(2015) 1139-1151.
|
[30] |
D. Bi, W. Tress, M.I. Dar, et al., Sci. Adv. 2(2016) e1501170.
|
[31] |
M. Saliba, S. Orlandi, T. Matsui, et al., Nat. Energy 1(2016) 15017.
|
[32] |
D. Bi, B. Xu, P. Gao, et al., Nano Energy 23(2016) 138-144.
|
[33] |
B. Xu, D. Bi, Y. Hua, et al., Energy Environ. Sci. 9(2016) 873-877.
|
[34] |
Q. Yan, Y. Guo, A. Ichimura, H. Tsuji, E. Nakamura, J. Am. Chem. Soc. 138(2016) 10897-10904.
|
[35] |
B. Xu, E. Sheibani, P. Liu, et al., Adv. Mater. 26(2014) 6629-6634.
|
[36] |
P. Gratia, A. Magomedov, T. Malinauskas, et al., Angew. Chem. Int. Ed. 54(2015) 11409-11413.
|
[37] |
T. Malinauskas, M. Saliba, T. Matsui, et al., Energy Environ. Sci. 9(2016) 1681-1686.
|
[38] |
P. Qin, S. Paek, M.I. Dar, et al., J. Am. Chem. Soc. 136(2014) 8516-8519.
|
[39] |
K. Rakstys, A. Abate, M.I. Dar, et al., J. Am. Chem. Soc. 137(2015) 16172-16178.
|
[40] |
H. Nishimura, N. Ishida, A. Shimazaki, et al., J. Am. Chem. Soc. 137(2015) 15656-15659.
|
[41] |
A. Molina-Ontoria, I. Zimmermann, I. Garcia-Benito, et al., Angew. Chem. Int. Ed. 55(2016) 6270-6274.
|
[42] |
I. Garcia-Benito, I. Zimmermann, J. Urieta-Mora, et al., J. Mater. Chem. A 5(2017) 8317-8324.
|
[43] |
I. Zimmermann, J. Urieta-Mora, P. Gratia, et al., Adv. Energy Mater. (2016) 1601674.
|
[44] |
W. Li, H. Dong, L. Wang, et al., J. Mater. Chem. A 2(2014) 13587-13592.
|
[45] |
S.N. Habisreutinger, T. Leijtens, G.E. Eperon, et al., Nano Lett. 14(2014) 5561-5568.
|
[46] |
M. Franckevicius, A. Mishra, F. Kreuzer, et al., Mater. Horiz. 2(2015) 6139-618.
|
[47] |
P. Ganesan, K. Fu, P. Gao, et al., Energy Environ. Sci. 8(2015) 1986-1991.
|
[48] |
Y.K. Wang, Z.C. Yuan, G.Z. Shi, et al., Adv. Funct. Mater. 26(2016) 1375-1381.
|
[49] |
Y. Wang, Z. Zhu, C.C. Chueh, A.K.Y. Jen, Y. Chi, Adv. Energy Mater. (2017) http://dx.doi.org/10.1002/aenm.201700823.
|
[50] |
J. Zhang, B. Xu, L. Yang, et al., Adv. Energy Mater. 7(2017) 1602736.
|
[51] |
F. Zhang, X. Yang, M. Cheng, W. Wang, L. Sun, Nano Energy 20(2016) 108-116.
|
[52] |
M. Li, Y. Li, S.I. Sasaki, et al., ChemSusChem 9(2016) 2862-2869.
|
[53] |
Y. Hua, B. Xu, P. Liu, et al., Chem. Sci. 7(2016) 2633-2638.
|
[54] |
J. Liu, Y. Wu, C. Qin, et al., Energy Environ. Sci. 7(2014) 2963-2967.
|
[55] |
J.S. Ni, H.C. Hsieh, C.A. Chen, et al., ChemSusChem 9(2016) 3139-3144.
|
[56] |
S. Kazim, F.J. Ramos, P. Gao, et al., Energy Environ. Sci. 8(2015) 1816-1823.
|
[57] |
S.J. Park, S.H. Jeon, I.K. Lee, et al., J. Mater. Chem. A 5(2017) 13220-13227.
|
[58] |
S. Jeon, U.K. Thakur, D. Lee, et al., Org. Electron. 37(2016) 134-140.
|
[59] |
H. Yao, L. Ye, H. Zhang, et al., Chem. Rev. 116(2016) 7397-7457.
|
[60] |
C. Chen, M. Cheng, P. Liu, et al., Nano Energy 23(2016) 40-49.
|
[61] |
M. Cheng, K. Aitola, C. Chen, et al., Nano Energy 30(2016) 387-397.
|
[62] |
J.H. Yun, S. Park, J.H. Heo, et al., Chem. Sci. 7(2016) 6649-6661.
|
[63] |
Y. Liu, Z. Hong, Q. Chen, et al., Adv. Mater. 28(2016) 440-446.
|
[64] |
Y. Liu, Q. Chen, H.S. Duan, et al., J. Mater. Chem. A 3(2015) 11940-11947.
|
[65] |
C. Steck, M. Franckevicius, S.M. Zakeeruddin, et al., J. Mater. Chem. A 3(2015) 17738-17746.
|
[66] |
D. Bi, A. Mishra, P. Gao, et al., ChemSusChem 9(2016) 433-438.
|
[67] |
Z. Li, Z. Zhu, C.C. Chueh, et al., J. Am. Chem. Soc. 138(2016) 11833-11839.
|
[68] |
F. Zhang, C. Yi, P. Wei, et al., Adv. Energy Mater. 6(2016) 1600401.
|
[69] |
X. Zhao, F. Zhang, C. Yi, et al., J. Mater. Chem. A 4(2016) 16330-16334.
|
[70] |
F. Zhang, X. Zhao, C. Yi, et al., Dyes Pigm. 136(2017) 273-277.
|
[71] |
C. Huang, W. Fu, C.Z. Li, et al., J. Am. Chem. Soc. 138(2016) 2528-2531.
|
[72] |
H. Chen, W. Fu, C. Huang, et al., Adv. Energy Mater. (2017) http://dx.doi.org/10.1002/aenm.201700012.
|
[73] |
Y. Xue, Y. Wu, Y. Li, J. Power Sources 344(2017) 160-169.
|
[74] |
L. Calio, C. Momblona, L. Gil-Escrig, et al., Sol. Energy Mater. Sol. Cells 163(2017) 237-241.
|
[75] |
K. Rakstys, S. Paek, P. Gao, et al., J. Mater. Chem. A 5(2017) 7811-7815.
|
[76] |
S. Paek, P. Qin, Y. Lee, et al., Adv. Mater. (2017) http://dx.doi.org/10.1002/adma.201606555.
|
[77] |
Y.S. Woon, N.H. Jun, J.J. Nam, et al., Science 348(2015) 1234-1237.
|
[78] |
Z. Zhu, Y. Bai, H.K.H. Lee, et al., Adv. Funct. Mater. 24(2014) 7357-7365.
|
[79] |
P. Qin, N. Tetreault, M.I. Dar, et al., Adv. Energy Mater. 5(2015) 1400980.
|
[80] |
H. Lu, Y. Ma, B. Gu, W. Tian, L. Li, J. Mater. Chem. A 3(2015) 16445-16452.
|
[81] |
J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, S.H. Im, Energy Environ. Sci. 8(2015) 1602-1608.
|
[82] |
S. Ryu, J.H. Noh, N.J. Jeon, et al., Energy Environ. Sci. 7(2014) 2614-2618.
|
[83] |
Y. Xiao, G. Han, Y. Chang, et al., J. Power Sources 267(2014) 1-8.
|
[84] |
W. Yan, Y. Li, Y. Li, et al., Nano Energy 16(2015) 428-437.
|
[85] |
Y. Xu, T. Bu, M. Li, et al., ChemSusChem (2017) http://dx.doi.org/10.1002/cssc.201700584.
|
[86] |
H.W. Chen, T.Y. Huang, T.H. Chang, et al., Sci. Rep. 6(2016) 34319.
|
[87] |
L. Ye, S. Zhang, L. Huo, M. Zhang, J. Hou, Acc. Chem. Res. 47(2014) 1595-1603.
|
[88] |
J.H. Heo, S.H. Im, J.H. Noh, et al., Nat. Photonics 7(2013) 486-491.
|
[89] |
W. Chen, X. Bao, Q. Zhu, et al., J. Mater. Chem. C 3(2015) 10070-10073.
|
[90] |
J.W. Lee, S. Park, M.J. Ko, H.J. Son, N.G. Park, ChemPhysChem 15(2014) 2595-2603.
|
[91] |
P. Nagarjuna, K. Narayanaswamy, T. Swetha, et al., Electrochim. Acta 151(2015) 21-26.
|
[92] |
H.C. Liao, T.L.D. Tam, P. Guo, et al., Adv. Energy Mater. 6(2016) 1600502.
|
[93] |
J. Kim, G. Kim, T.K. Kim, et al., J. Mater. Chem. A 2(2014) 17291-17296.
|
[94] |
G.W. Kim, G. Kang, J. Kim, et al., Energy Environ. Sci. 9(2016) 2326-2333.
|
[95] |
K. Kranthiraja, K. Gunasekar, H. Kim, et al., Adv. Mater. 29(2017) 1700183.
|
[96] |
B. Cai, Y. Xing, Z. Yang, W.H. Zhang, J. Qiu, Energy Environ. Sci. 6(2013) 1480-1485.
|
[97] |
A. Dubey, N. Adhikari, S. Venkatesan, et al., Sol. Energy Mater. Sol. Cells 145(2016) 193-199.
|
|
|
|