|
|
Magnetically separated and N, S co-doped mesoporous carbon microspheres for the removal of mercury ions |
Ming-Xian Liua, Xiang-Xiang Denga, Da-Zhang Zhua, Hui Duana, Wei Xiongb, Zi-Jie Xua, Li-Hua Gana |
a Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, Shanghai 200092, China;
b School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China |
|
|
Abstract Magnetically separated and N, S co-doped mesoporous carbon microspheres (N/S-MCMs/Fe3O4) are fabricated by encapsulating SiO2 nanoparticles within N, S-containing polymer microspheres which were prepared using resorcinol/formaldehyde as the carbon source and cysteine as the nitrogen and sulfur co-precursors, followed by the carbonization process, silica template removal, and the introduction of Fe3O4 into the carbon mesopores. N/S-MCMs/Fe3O4 exhibits an enhanced Hg2+ adsorption capacity of 74.5 mg/g, and the adsorbent can be conveniently and rapidly separated from wastewater using an externalmagnetic field. This study opens up new opportunities to synthesize welldeveloped, carbon-based materials as an adsorbent for potential applications in the removal of mercury ions from wastewater.
|
Received: 09 October 2015
Published: 02 February 2016
|
Fund:This work was financially supported by the National Natural Science Foundation of China (Nos. 21207099, 21273162, and 21473122), the Science and Technology Commission of Shanghai Municipality, China (No. 14DZ2261100), and the Fundamental Research Funds for the Central Universities, and the Large Equipment Test Foundation of Tongji University. |
Corresponding Authors:
Li-Hua Gan
E-mail: ganlh@tongji.edu.cn
|
|
|
|
[1] |
(a) J.H. Zhu, S.Y. Wei, H.B. Gu, et al., One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal, Environ. Sci. Technol. 46(2011) 977-985;
|
(b) |
H.B. Gu, S.B. Rapole, J. Sharma, et al., Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal, RSC Adv. 2(2012) 11007-11018;
|
(c) |
P.K. Tripathi, M.X. Liu, Y.H. Zhao, et al., Enlargement of uniform micropores in hierarchically ordered micro-mesoporous carbon for high level decontamination of bisphenol A, J. Mater. Chem. A 2(2014) 8534-8544;
|
(d) |
M. Ceg?owski, G. Schroeder, Preparation of porous resin with Schiff base chelating groups for removal of heavy metal ions from aqueous solutions, Chem. Eng. J. 263(2015) 402-411;
|
(e) |
S.Y. Lin, H.J. Zhu, W.J. Xu, G.M. Wang, N.Y. Fu, A squaraine based fluorescent probe for mercury ion via coordination induced deaggregation signaling, Chin. Chem. Lett. 25(2014) 1291-1295.
|
[2] |
(a) J.H. Zhu, H.B. Gu, J. Guo, et al., Mesoporous magnetic carbon nanocomposite fabrics for highly efficient Cr (VI) removal, J. Mater. Chem. A 2(2014) 2256-2265;
|
(b) |
S.X. Zhang, Y.Y. Zhang, J.S. Liu, et al., Thiol modified Fe3O4@SiO2 as a robust, high effective, and recycling magnetic sorbent for mercury removal, Chem. Eng. J. 226(2013) 30-38;
|
(c) |
F.L. Fu, Q. Wang, Removal of heavy metal ions from wastewaters:a review, J. Environ. Manag. 92(2011) 407-418;
|
(d) |
A.H. Chen, S.C. Liu, C.Y. Chen, C.Y. Chen, Comparative adsorption of Cu (Ⅱ), Zn (Ⅱ), and Pb (Ⅱ) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin, J. Hazard. Mater. 154(2008) 184-191;
|
(e) |
Y. Liu, E.B. Yang, R.H. Han, et al., A new rhodamine-based fluorescent chemosensor for mercury in aqueous media, Chin. Chem. Lett. 25(2014) 1065-1068.
|
[3] |
(a) M. Hadavifar, N. Bahramifar, H. Younesi, Q. Li, Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multiwalled carbon nanotube with both amino and thiolated groups, Chem. Eng. J. 237(2014) 217-228;
|
(b) |
A.M. Starvin, T.P. Rao, Removal and recovery of mercury (Ⅱ) from hazardous wastes using 1-(2-thiazolylazo)-2-naphthol functionalized activated carbon as solid phase extractant, J. Hazard. Mater. 113(2004) 75-79;
|
(c) |
J.Z. Zhu, B.L. Deng, J. Yang, D.C. Gang, Modifying activated carbon with hybrid ligands for enhancing aqueous mercury removal, Carbon 47(2009) 2014-2025.
|
[4] |
A.A. Ismaiel, M.K. Aroua, R. Yusoff, Palm shell activated carbon impregnated with task-specific ionic-liquids as a novel adsorbent for the removal of mercury from contaminated water, Chem. Eng. J. 225(2013) 306-314.
|
[5] |
(a) M.M. Matlock, B.S. Howerton, D.A. Atwood, Chemical precipitation of heavy metals from acid mine drainage, Water Res. 36(2002) 4757-4764;
|
(b) |
J. Aguado, J.M. Arsuaga, A. Arencibia, Adsorption of aqueous mercury (Ⅱ) on propylthiol-functionalized mesoporous silica obtained by cocondensation, Ind. Eng. Chem. Res. 44(2005) 3665-3671;
|
(c) |
C. Jeon, W.H. Höll, Chemical modification of chitosan and equilibrium study for mercury ion removal, Water Res. 37(2003) 4770-4780;
|
(d) |
S. Chaturabul, W. Srirachat, T. Wannachod, et al., Separation of mercury (Ⅱ) from petroleum produced water via hollow fiber supported liquid membrane and mass transfer modeling, Chem. Eng. J. 265(2015) 34-46;
|
(e) |
H. Pietilä, P. Perämä ki, J. Piispanen, et al., Determination of low methylmercury concentrations in peat soil samples by isotope dilution GC-ICP-MS using distillation and solvent extraction methods, Chemosphere 124(2015) 47-53;
|
(f) |
S. Vasudevan, M.A. Oturan, Electrochemistry:as cause and cure in water pollution-an overview, Environ. Chem. Lett. 12(2014) 97-108.
|
[6] |
(a) S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water:a review, J. Hazard. Mater. 97(2003) 219-243;
|
(b) |
Y. Kikuchi, Q. Qian, M. Machida, et al., Effect of ZnO loading to activated carbon on Pb (Ⅱ) adsorption from aqueous solution, Carbon 44(2006) 195-202;
|
(c) |
Y.Y. Xu, Z.H. Hao, H. Chen, J.M. Sun, D.J. Wang, Preparation of polyacrylonitrile initiated by modified corn starch and adsorption for mercury after modification, Ind. Eng. Chem. Res. 53(2014) 4871-4877.
|
[7] |
(a) Y. Shin, G.E. Fryxell, W. Um, et al., Sulfur-functionalized mesoporous carbon, Adv. Funct. Mater. 17(2007) 2897-2901;
|
(b) |
G. Zolfaghari, A. Esmaili-Sari, M. Anbia, et al., Taguchi optimization approach for Pb (Ⅱ) and Hg (Ⅱ) removal from aqueous solutions using modified mesoporous carbon, J. Hazard. Mater. 192(2011) 1046-1055.
|
[8] |
L.F. Lai, G.M. Huang, X.F. Wang, J. Weng, Solvothermal syntheses of hollow carbon microspheres modified with-NH2 and-OH groups in one-step process, Carbon 48(2010) 3145-3156.
|
[9] |
(a) X.B. Wang, J. Liu, W.Z. Xu, One-step hydrothermal preparation of aminofunctionalized carbon spheres at low temperature and their enhanced adsorption performance towards Cr (VI) for water purification, Colloids Surf. A 415(2012) 288-294;
|
(b) |
X.H. Song, P. Gunawan, R.R. Jiang, et al., Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions, J. Hazard. Mater. 194(2011) 162-168;
|
(c) |
X. Zhao, W. Li, S.S. Zhang, L.H. Liu, S.X. Liu, Hierarchically tunable porous carbon spheres derived from larch sawdust and application for efficiently removing Cr (Ⅲ) and Pb (Ⅱ), Mater. Chem. Phys. 155(2015) 52-58;
|
(d) |
C.M. Zhang, W. Song, G.H. Sun, et al., Synthesis, characterization, and evaluation of activated carbon spheres for removal of dibenzothiophene from model diesel fuel, Ind. Eng. Chem. Res. 53(2014) 4271-4276.
|
[10] |
(a) L.C.A. Oliveira, D.I. Petkowicz, A. Smaniotto, S.B.C. Pergher, Magnetic zeolites:a new adsorbent for removal of metallic contaminants from water, Water Res. 38(2004) 3699-3704;
|
(b) |
Z.G. Jia, L.L. Yang, J.H. Liu, Q.Z. Wang, R.S. Zhu, Preparation of magnetic carbon spheres derived form 8-quinoliolato Fe (Ⅲ) complexe and its application in water treatment, J. Ind. Eng. Chem. 21(2015) 111-117;
|
(c) |
X.J. Peng, Z.K. Luan, Z.C. Di, Z.G. Zhang, C.L. Zhu, Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb (Ⅱ) and Cu (Ⅱ) from water, Carbon 43(2005) 880-883;
|
(d) |
J.F. Liu, Z.S. Zhao, G.B. Jiang, Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water, Environ. Sci. Technol. 42(2008) 6949-6954.
|
[11] |
M.X. Liu, L.H. Gan, W. Xiong, et al., Development of MnO2/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes, J. Mater. Chem. A 2(2014) 2555-2562.
|
[12] |
A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Raman microspectroscopy of soot and related carbonaceous materials:spectral analysis and structural information, Carbon 43(2005) 1731-1742.
|
[13] |
(a) D.L.A. de Faria, S.V. Silva, M.T. de Oliveira, Raman microspectroscopy of some iron oxides and oxyhydroxides, J. Raman Spectrosc. 28(1997) 873-878;
|
(b) |
C.F. Guo, Y. Hu, H.S. Qian, J.Q. Ning, S.J. Xu, Magnetite (Fe3O4) tetrakaidecahedral microcrystals:synthesis, characterization, and micro-Raman study, Mater. Charact. 62(2011) 148-151.
|
[14] |
S.Y. Lee, D.H. Kim, S.C. Choi, et al., Porous multi-walled carbon nanotubes by using catalytic oxidation via transition metal oxide, Microporous Mesoporous Mater. 194(2014) 46-51.
|
[15] |
(a) Y.H. Zhao, M.X. Liu, X.X. Deng, et al., Nitrogen-functionalized microporous carbon nanoparticles for high performance supercapacitor electrode, Electrochim. Acta 153(2015) 448-455;(b) D.Z. Zhu, Y.W. Wang, L.H. Gan, et al., Nitrogen-containing carbon microspheres for supercapacitor electrodes, Electrochim. Acta 158(2015) 166-174.
|
[16] |
(a) S.A. Wohlgemuth, F. Vilela, M.M. Titirici, M. Antonietti, A one-pot hydrothermal synthesis of tunable dual heteroatom-doped carbon microspheres, Green Chem. 14(2012) 741-749;
|
(b) |
S.A. Wohlgemuth, R.J. White, M.G. Willinger, M.M. Titirici, M. Antonietti, A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction, Green Chem. 14(2012) 1515-1523.
|
[17] |
J.N. Gao, X.Z. Ran, C.M. Shi, et al., One-step solvothermal synthesis of highly watersoluble, negatively charged superparamagnetic Fe3O4 colloidal nanocrystal clusters, Nanoscale 5(2013) 7026-7033.
|
[18] |
X.M. Ma, L.H. Gan, M.X. Liu, et al., Mesoporous size controllable carbon microspheres and their electrochemical performances for supercapacitor electrodes, J. Mater. Chem. A 2(2014) 8407-8415.
|
[19] |
W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci. 26(1968) 62-69.
|
[20] |
J. Liu, S.Z. Qiao, H. Liu, et al., Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres, Angew. Chem. Int. Ed. 50(2011) 5947-5951.
|
[21] |
(a) J. Choma, D. Jamio?a, K. Augustynek, et al., New opportunities in Stöber synthesis:preparation of microporous and mesoporous carbon spheres, J. Mater. Chem. 22(2012) 12636-12642;
|
(b) |
A.B. Fuertes, P. Valle-Vigón, M. Sevilla, One-step synthesis of silica@resorcinol-formaldehyde spheres and their application for the fabrication of polymer and carbon capsules, Chem. Commun. 48(2012) 6124-6126;
|
(c) |
J. Liu, T.Y. Yang, D.W. Wang, et al., A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres, Nat. Commun. 4(2013) 2798;
|
(d) |
M.X. Liu, X.M. Ma, L.H. Gan, et al., A facile synthesis of a novel mesoporous Ge@C sphere anode with stable and high capacity for lithium ion batteries, J. Mater. Chem. A 2(2014) 17107-17114;
|
(e) |
M.X. Liu, J.H. Qian, Y.H. Zhao, et al., Core-shell ultramicroporous@microporous carbon nanospheres as advanced supercapacitor electrodes, J. Mater. Chem. A 3(2015) 11517-11526.
|
[22] |
N.P. Wickramaratne, V.S. Perera, J.M. Ralph, S.D. Huang, M. Jaroniec, Cysteineassisted tailoring of adsorption properties and particle size of polymer and carbon spheres, Langmuir 29(2013) 4032-4038.
|
|
|
|