|
|
Recent advance of photochromic diarylethenes-containing supramolecular systems |
Chao Xiaoa, Wei-Ye Zhaoa, Da-Yang Zhoub, Yan Huangc, Ye Taoc, Wan-Hua Wuaa, Cheng Yanga |
a Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China;
b Comprehensive Analysis Center, ISIR, Osaka University, Mihogaoka, Ibaraki 567-0047, Japan;
c BSFR, Institute of High Energy Physics Chinese Academy of Sciences, Beijing 100049, China |
|
|
Guide Photochromic diarylethenes were deemed to be one of the most promising molecular building blocks for photoresponsive materials. This review gives a brief summary to the recent progress of studies of diarylethenes in supramolecular systems, focusing on their applications in biological systems, photo-responsive mechanical materials and photo-responsive chemosensors. |
|
Abstract Photochromic diarylethenes were deemed to be one of themost promising molecular building blocks for photoresponsive materials. This review gives a brief summary to the recent progress of studies of diarylethenes in supramolecular systems, focusing on their applications in biological systems, photoresponsive mechanical materials and photoresponsive chemosensors.
|
Received: 19 March 2015
Published: 14 May 2015
|
Fund: We thank the National Natural Science Foundation of China (Nos. 21372165, 21321061 and 21402129) and State Key Laboratory of Polymer Materials Engineering (No. sklpme2014-2-06), and Comprehensive Training Platform of Specialized Laboratory, College of Chemistry, Sichuan University for financial support. |
Corresponding Authors:
Wan-Hua Wua, Cheng Yang
E-mail: wuwanhua@scu.edu.cn;yangchengyc@scu.edu.cn
|
|
|
|
[1] |
J.M. Lehn, Supramolecular Chemistry: Concepts and Perspectives, VCH, Weinheim, 1995.
|
[2] |
G. Fukuhara, H. Umehara, S. Higashino, et al., Supramolecular photocyclodimerization of 2-hydroxyanthracene with a chiral hydrogen-bonding template, cyclodextrin and serum albumin, Photochem. Photobiol. Sci. 13 (2014) 162-171.
|
[3] |
C. Yang, Recent progress in supramolecular chiral photochemistry, Chin. Chem. Lett. 24 (2013) 437-441.
|
[4] |
S. Yagai, M. Usui, T. Seki, et al., Supramolecularly engineered perylene bisimide assemblies exhibiting thermal transition from columnar to multilamellar structures, J. Am. Chem. Soc. 134 (2012) 7983-7994.
|
[5] |
X.Y. Hu, Y. Chen, Y. Liu, Redox-responsive supramolecular nanoparticles based on amphiphilic sulfonatocalixarene and selenocystamine dihydrochloride, Chin. Chem. Lett. 26 (2015) 862-866.
|
[6] |
Y.B. Lim, K.S. Moon, M. Lee, Recent advances in functional supramolecular nanostructures assembled from bioactive building blocks, Chem. Soc. Rev. 38 (2009) 925-934.
|
[7] |
T. Hirose, K. Matsuda, Photoswitching of chiral supramolecular environments and photoinduced lower critical solution temperature transitions in aqueous media following a supramolecular approach, Org. Biomol. Chem. 11 (2013) 873-880.
|
[8] |
H.J. Kim, T. Kim, M. Lee, Responsive nanostructures from aqueous assembly of rigid-flexible block molecules, Acc. Chem. Res. 44 (2011) 72-82.
|
[9] |
L. Qin, P.F. Duan, M.H. Liu, Interfacial assembly and host-guest interaction of anthracene-conjugated L-glutamate dendron with cyclodextrin at the air/water interface, Chin. Chem. Lett. 25 (2014) 487-490.
|
[10] |
E. Ohta, H. Sato, S. Ando, et al., Redox-responsive molecular helices with highly condensed pi-clouds, Nat. Chem. 3 (2011) 68-73.
|
[11] |
X. Zhang, S. Rehm, M.M. Safont-Sempere, F. Wurthner, Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems, Nat. Chem. 1 (2009) 623-629.
|
[12] |
Y.X. Sun, W.Y. Sun, Influence of temperature on metal-organic frameworks, Chin. Chem. Lett. 25 (2014) 823-828.
|
[13] |
H. Dü rr, H. Bouas-Laurent, Photochromism: Molecules and Systems, Gulf Professional Publishing, 2003.
|
[14] |
M. Irie, Diarylethenes for memories and switches, Chem. Rev. 100 (2000) 1685- 1716.
|
[15] |
W. Szymanski, J.M. Beierle, H.A. Kistemaker, W.A. Velema, B.L. Feringa, Reversible photocontrol of biological systems by the incorporation of molecular photoswitches, Chem. Rev. 113 (2013) 6114-6178.
|
[16] |
L.X. Yu, Y. Liu, S.C. Chen, Y. Guan, Y.Z. Wang, Reversible photoswitching aggregation and dissolution of spiropyran-functionalized copolymer and light-responsive FRET process, Chin. Chem. Lett. 25 (2014) 389-396.
|
[17] |
T.T. Cao, X.Y. Yao, J. Zhang, Q.C. Wang, X. Ma, A cucurbit[8] uril recognized rigid supramolecular polymer with photo-stimulated responsiveness, Chin. Chem. Lett. 26 (2015) 867-871.
|
[18] |
W. Zhu, Y. Yang, R. Mé tivier, et al., Unprecedented stability of a photochromic bisthienylethene based on benzobisthiadiazole as an ethene bridge, Angew. Chem. In. Ed. 50 (2011) 10986-10990.
|
[19] |
S. Nakamura, M. Irie, Thermally irreversible photochromic systems. A theoretical study, J. Org. Chem. 53 (1988) 6136-6138.
|
[20] |
F. Xia, L. Feng, S. Wang, et al., Dual-responsive surfaces that switch between superhydrophilicity and superhydrophobicity, Adv. Mater. 18 (2006) 432-436.
|
[21] |
D. Wu, L. Zhi, G.J. Bodwell, et al., Self-assembly of positively charged discotic PAHs: from nanofibers to nanotubes, Angew. Chem. Int. Ed. 46 (2007) 5417-5420.
|
[22] |
T. Hirose1,M. Irie, K. Matsuda, Self-assembly of photochromic diarylethenes with amphiphilic side chains: core-chain ratio dependence on supramolecular structures, Chem. Asian J. 4 (2009) 58-66.
|
[23] |
S. Xiao, Y. Zou, J. Wu, et al., Hydrogen bonding assisted switchable fluorescence in self-assembled complexes containing diarylethene: controllable fluorescent emission in the solid state, J. Mater. Chem. 17 (2007) 2483-2489.
|
[24] |
S. Yagai, K. Iwai, T. Karatsu, A. Kitamura, Photoswitchable exciton coupling in merocyanine-diarylethene multi-chromophore hydrogen-bonded complexes, Angew. Chem. Int. Ed. 51 (2012) 9679-9683.
|
[25] |
X. Cao, J. Zhou, Y. Zou, et al., Fluorescence and morphology modulation in a photochromic diarylethene self-assembly system, Langmuir 27 (2011) 5090-5097.
|
[26] |
S. Yagai, K. Ohta, M. Gushiken, et al., Photoreversible supramolecular polymerisation and hierarchical organization of hydrogen-bonded supramolecular copolymers composed of diarylethenes and oligothiophenes, Chem. Eur. J. 18 (2012) 2244-2253.
|
[27] |
D.T. McQuade, A.E. Pullen, T.M. Swager, Conjugated polymer-based chemical sensors, Chem. Rev. 100 (2000) 2537-2574.
|
[28] |
W. Wu, J. Zhao, H. Guo, et al., Long-lived room-temperature near-IR phosphorescence of BODIPY in a visible-light-harvesting N^C^N Pt(II)-acetylide complex with a directly metalated BODIPY chromophore, Chem. Eur. J. 18 (2012) 1961-1968.
|
[29] |
S. Yagai, K. Ishiwatari, X. Lin, et al., Rational design of photoresponsive supramolecular assemblies based on diarylethene, Chem. Eur. J. 19 (2013) 6971- 6975.
|
[30] |
X. Zhou, Y. Duan, S. Yan, et al., Optical modulation of supramolecular assembly of amphiphilic photochromic diarylethene: from nanofiber to nanosphere, Chem. Commun. 47 (2011) 6876-6878.
|
[31] |
S. Yagai, K. Iwai, M. Yamauchi, et al., Photocontrol over self-assembled nanostructures of π-π stacked dyes supported by the parallel conformer of diarylethene, Angew. Chem. Int. Ed. 53 (2014) 2602-2606.
|
[32] |
A. Falciatore, C. Bowler, The evolution and function of blue and red light photoreceptors, Curr. Top. Dev. Biol. 68 (2005) 317-350.
|
[33] |
E. Schäfer, C. Bowler, Phytochrome-mediated photoperception and signal transduction in higher plants, EMBO Rep. 3 (2002) 1042-1048.
|
[34] |
O. Babii, S. Afonin, M. Berditsch, et al., Controlling biological activity with light: diarylethene-containing cyclic peptidomimetics, Angew. Chem. Int. Ed. 53 (2014) 3392-3395.
|
[35] |
D. Vomasta, C. Hogner, N.R. Branda, B. Konig, Regulation of human carbonic anhydrase I (hCAI) activity by using a photochromic inhibitor, Angew. Chem. Int. Ed. 47 (2008) 7644-7647.
|
[36] |
A.A. Beharry, G.A. Woolley, Azobenzene photoswitches for biomolecules, Chem. Soc. Rev. 40 (2011) 4422-4437.
|
[37] |
S. Ogasawara, M. Maeda, Reversible photoswitching of a G-quadruplex, Angew. Chem. Int. Ed. 48 (2009) 6671-6674.
|
[38] |
A. Mammana, G.T. Carroll, J. Areephong, B.L. Feringa, A chiroptical photoswitchable DNA complex, J. Phys. Chem. B 115 (2011) 11581-11587.
|
[39] |
H. Cahova, A. Jaschke, Nucleoside-based diarylethene photoswitches and their facile incorporation into photoswitchable DNA, Angew. Chem. Int. Ed. 52 (2013) 3186-3190.
|
[40] |
Y. Liu, A.H. Flood, P.A. Bonvallet, et al., Linear artificial molecular muscles, J. Am. Chem. Soc. 127 (2005) 9745-9759.
|
[41] |
L. Fang, M. Hmadeh, J. Wu, et al., Acid-base actuation of [c2]daisy chains, J. Am. Chem. Soc. 131 (2009) 7126-7134.
|
[42] |
G. Paul, Clark, W. Michael, R.H. Day, Grubbs, Switching and extension of a [c2]daisy-chain dimer polymer, J. Am. Chem. Soc. 131 (2009) 13631-13633.
|
[43] |
M. Morimoto, M. Irie, A diarylethene cocrystal that converts light into mechanical work, J. Am. Chem. Soc. 132 (2010) 14172-14178.
|
[44] |
D. Kitagawa, H. Nishi, S. Kobatake, Photoinduced twisting of a photochromic diarylethene crystal, Angew. Chem. Int. Ed. 52 (2013) 9320-9322.
|
[45] |
Y. Li, M. Wang, H. Wang, A. Urbas, Q. Li, Rationally designed axially chiral diarylethene switches with high helical twisting power, Chem. Eur. J. 20 (2014) 16286-16292.
|
[46] |
L. Hou, X. Zhang, T.C. Pijper, W.R. Browne, B.L. Feringa, Reversible photochemical control of singlet oxygen generation using diarylethene photochromic switches, J. Am. Chem. Soc. 136 (2014) 910-913.
|
[47] |
J.F. Lovell, T.W.B. Liu, J. Chen, G. Zheng, Activatable photosensitizers for imaging and therapy, Chem. Rev. 110 (2010) 2839-2857.
|
[48] |
X. Cui, J. Zhao, Y. Zhou, J. Ma, Y. Zhao, Reversible photoswitching of triplet-triplet annihilation upconversion using dithienylethene photochromic switches, J. Am. Chem. Soc. 136 (2014) 9256-9259.
|
[49] |
J. Zhao, W. Wu, J. Sun, S. Guo, Triplet photosensitizers: from molecular design to applications, Chem. Soc. Rev. 42 (2013) 5323-5351.
|
|
|
|